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Abstract
We study a particular class of the mappings introduced by Quispel, Roberts
and Thompson that come from a two-component system but can be naturally
reduced to a one-component one. We classify all these mappings on the basis
of the canonical forms of the QRT matrices. We also present the extension of
these systems to nonautonomous forms, which are usually discrete Painlevé
equations.

PACS number: 02.30Ik

1. Introduction

The QRT mapping, introduced by Quispel, Roberts and Thompson [1] has played a major
role in the exploration of integrability in discrete systems. When this family of mappings was
discovered the paucity of examples of integrable mappings was extreme. The QRT system not
only furnished a testing ground for conjectures related to discrete integrability [2, 3], but also
provided the key ingredient for the derivation of discrete Painlevé equations [4]. As a matter of
fact, the latter can be obtained from QRT mappings through the process of deautonomization
i.e. by letting the parameters of the mappings become functions of the independent variable.

Recently the QRT mapping has been the object of several studies. In [5, 6] the solution of
the ‘asymmetric’ family was presented. The important result is the proof that this solution can
be expressed in terms of elliptic functions. In [7] we have shown that the same holds true for
another family of mappings which go beyond the QRT family and which possess invariants of
higher degree than QRT [8].

In the present study we intend to investigate a particular sub-family which we call
‘antisymmetric’ for reasons which will become obvious in what follows.
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2. A recall of the QRT mapping and the canonical A matrices

The QRT mapping is presented in two forms, traditionally called ‘symmetric’ and
‘asymmetric’. The key ingredients are two 3 × 3 matrices, A0 and A1

Ai =
αi βi γi

δi εi ζi

κi λi µi

 . (2.1)

If both matrices are symmetric the mapping is called symmetric. Otherwise it is called

asymmetric. In order to derive the mapping one introduces the vector �X =
(

x2

x

1

)
and

constructs the two vectors �F ≡
(

f1

f2

f3

)
and �G ≡

(
g1

g2

g3

)
by

�F = (A0 �X) × (A1 �X) (2.2a)

�G = (Ã0 �X) × (Ã1 �X) (2.2b)

where the tilde denotes the transpose of the matrix. The components fi, gi of the vectors �F, �G
are, in general, quartic polynomials of x. In the asymmetric case the mapping assumes the
form

xn+1 = f1(yn) − xnf2(yn)

f2(yn) − xnf3(yn)
(2.3a)

yn+1 = g1(xn+1) − yng2(xn+1)

g2(xn+1) − yng3(xn+1)
. (2.3b)

In the symmetric case we have gi = fi and (2.3) reduces to a single equation

xm+1 = f1(xm) − xm−1f2(xm)

f2(xm) − xm−1f3(xm)
(2.4)

with the identification xn → x2n, yn → x2n+1. While apparently the mapping involves 18
(resp 12) parameters in the asymmetric (resp symmetric) case, the number of genuine
parameters is eight for the asymmetric mapping and five for the symmetric one, as explained
in [9].

The QRT mapping possesses an invariant which is biquadratic in x and y:

(α0 + Kα1)x
2
ny

2
n + (β0 + Kβ1)x

2
nyn + (γ0 + Kγ1)x

2
n + (δ0 + Kδ1)xny

2
n + (ε0 + Kε1)xnyn

+ (ζ0 + Kζ1)xn + (κ0 + Kκ1)y
2
n + (λ0 + Kλ1)yn + (µ0 + Kµ1) = 0 (2.5)

where K plays the role of the integration constant. In the symmetric case the invariant becomes
just

(α0 + Kα1)x
2
n+1x

2
n + (β0 + Kβ1)xn+1xn(xn+1 + xn) + (γ0 + Kγ1)

(
x2

n+1 + x2
n

)
+ (ε0 + Kε1)xn+1xn + (ζ0 + Kζ1)(xn+1 + xn) + (µ0 + Kµ1) = 0. (2.6)

In the symmetric case the invariance of K means simply that K(xn−1, xn) = K(xn, xn+1).
However, for the asymmetric case one should advance one variable at each step i.e.
K(xn, yn−1) = K(xn, yn) = K(xn+1, yn).

In order to construct specific instances of the QRT mapping one must introduce the
appropriate A0 and A1 matrices. In [5] we have provided a classification of the canonical
forms of the A1 matrices. The idea was to base ourselves on the classification of the forms
of discrete Painlevé equations and, at the autonomous limit, construct the corresponding QRT
matrices. One can, in fact, choose the A1 matrix to depend only on the ‘family’ of the equation
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and put all the details into the A0 matrix. The classification we give is based (we must admit,
somewhat arbitrarily) on the functional form of the equation, just as we did in [10]. We give
below the general form of the equation and the corresponding A1 matrix

(I) xn+1 + xn−1 = f (xn) A1 =
0 0 0

0 0 0
0 0 1



(II) xn+1xn−1 = f (xn) A1 =
0 0 0

0 1 0
0 0 0



(III) (xn+1 + xn)(xn + xn−1) = f (xn) A1 =
0 0 0

0 0 1
0 1 0



(IV) (xn+1xn − 1)(xnxn−1 − 1) = f (xn) A1 =
0 0 0

0 1 0
0 0 −1



(V)
(xn+1 + xn + 2z)(xn + xn−1 + 2z)

(xn+1 + xn)(xn + x−1)
= f (xn) A1 =

0 0 1
0 2 2z

1 2z 0



(VI)
(xn+1xn − z2)(xnxn−1 − z2)

(xn+1xn − 1)(xnxn−1 − 1)
= f (xn) A1 =

1 0 0
0 −z2 − 1 0
0 0 z2



(VII)
(xn+1 − xn − z2)(xn−1 − xn − z2) + 4xnz

2

xn+1 − 2xn + xn−1 − 2z2
= f (xn) A1 =

0 0 1
0 −2 −2z2

1 −2z2 z4


(VIII)

(xn+1z
2 − xn)(xn−1z

2 − xn) − (z4 − 1)2

(xn+1z−2 − xn)(xn−1z−2 − xn) − (z−4 − 1)2
= f (xn)

A1 =
 0 0 z4

0 −z2(z4 + 1) 0
z4 0 (z4 − 1)2

 .

The forms of equations presented above correspond to symmetric mappings but they can be
extended to asymmetric ones directly, the A1 matrix being the same. Eight distinct forms of
A1 matrices were thus identified. They will be essential for the derivation of the antisymmetric
QRT mappings given in the next section.

3. The antisymmetric QRT mappings

As we have seen in the previous section, the QRT mappings appear either in the ‘symmetric’,
one-component, form or in the ‘asymmetric’ one, which is written as a system and involves
two components. However, there exists a particular class of asymmetric QRT mappings
which do not necessitate two components. These mappings are obtained from the general
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asymmetric case with the restriction that one of the Ai matrices, say A0 be antisymmetric,
while the other, A1 with the present choice, is symmetric. In this case we have �G = − �F and
the usual staggering which allows us to reduce (2.3a, b) to a single equation (2.4) still works.
For obvious reasons we call this mapping, which has the form

xm+1 = g1(xm) − xm−1g2(xm)

g2(xm) − xm−1g3(xm)
(3.1)

the antisymmetric QRT mapping. While it has the same form as the symmetric QRT,
equation (2.4), it is not possible to derive its explicit form from a symmetric choice of
A0, A1 (generically) and thus it constitutes a new class of mappings having the symmetric
QRT appearance. (Another way to obtain a non-standard, one-component QRT mapping
is when both A0 and A1 are antisymmetric. However, this case is not very interesting.
The only resulting mapping is xn+1xn−1 − (xn+1 + xn−1)xn + x2

n = 0 which factorizes into
(xn+1 − xn)(xn−1 − xn) = 0 and thus does not define a nontrivial evolution).

We start with the generic antisymmetric A0 matrix:

A0 =
 0 β γ

−β 0 ζ

−γ −ζ 0

 . (3.2)

In order to derive the antisymmetric QRT mapping we combine the antisymmetric A0 with
the canonical A1 given in section 2. We complement this derivation by deautonomizing the
resulting mappings, obtaining equations usually in the discrete Painlevé class.

(I) Taking β = 1, (since β = 0 leads to a trivial mapping), we find

xn+1 + xn−1 = x2
n − ζ

xn + γ
(3.3)

and translating x we find finally

xn+1 + xn−1 = xn +
z

xn

. (3.4)

We deautonomize this mapping using either of the discrete integrability criteria which are
perfectly suitable for the present case, singularity confinement or algebraic entropy. The
application of these criteria to the mapping (3.4) yields the following n-dependence for
z: zn = pn + r + s(−1)n. Since we are restricting ourselves to mappings which have a
‘symmetric’ appearance, we discard the even–odd-dependent term s(−1)n, and find simply
zn = pn + r . Changing the sign of every other x we find

xn+1 + xn−1 + xn = zn

xn

+ t (3.5)

in the special case t = 0. Equation (3.5) with generically non-zero t and s is exactly the
equation we called the asymmetric d-PI which is just the contiguity relation of the solutions
of PIV [11], t being the continuous variable of the latter.

(II) This case leads to the mapping (with γ = 1, lest the equation becomes trivial)

xn+1xn−1 = −xn(xn − ζ )

βxn + 1
(3.6)

which, though very similar, is not of the symmetric QRT type because of the presence of
the minus sign on the right-hand side. The deautonomization of this mapping leads to
ζ = ζ0λ

n, β = β0λ
n (if we neglect all even–odd dependences). The resulting mapping

is equivalent to a known Painlevé equation. Indeed if we define x2n = −1/(β2ny2n) and
x2n+1 = ζ2n+1y2n+1 we obtain a symmetric form:

yn+1yn−1 = 1

β2
nζ

2
n

1 + βnζnyn

yn(1 − yn)
. (3.7)

This is a special case of an equation derived in [12] and studied by Kajiwara et al in [13].
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Taking β = 0 in (3.6) we find the mapping xn+1xn−1 = −xn(xn − ζ ). In this case, the
n-dependence of ζ can be absorbed through a gauge transformation. The solution of this
autonomous equation can be expressed in terms of hyperbolic functions. This is in perfect
analogy to the case of the continuous PIII equation w′′ = w′2/w − w′/t + β/t + δ/w when the
two other terms are absent. In that case the equation can be transformed into an autonomous
one and solved in terms of hyperbolic functions.

(III) In the next case we obtain the mapping

(xn + xn+1)(xn + xn−1) = 2xn

(
x2

n − ζ
)

xn + γ
. (3.8)

The deautonomization of this mapping leads to constant ζ and γ = pn + r , if one restricts
oneself to the symmetric case. This mapping is an extremely curious one, and has never been
identified to this day. If we reintroduce the full freedom, we have an asymmetric mapping:

(xn + xn+1)(xn + xn−1) = 1

t

(xn − a)(xn − b)(xn − c)

xn + zn

(3.9a)

(xn+2 + xn+1)(xn + xn+1) = 1

1 − t

(xn+1 + a)(xn+1 + b)(xn+1 + c)

xn+1 + zn+1
(3.9b)

with zn = pn + r + s(−1)n and equation (3.8) corresponds to a = s = 0, c = −b, t = 1/2.
This equation is a contiguity relation of the Ablowitz–Fokas equation [14] and will be studied
in more detail elsewhere [15].

When γ = 0, the mapping reduces to (xn + xn+1)(xn + xn−1) = 2
(
x2

n − ζ
)
. This is a

special case of the mapping (xn + xn+1)(xn + xn−1) = f (n)
(
x2

n − ζ
)

obtained in [10] where it
was shown to be linearizable. On the other hand taking ζ = γ 2 leads to the degenerate (in the
sense introduced in [10]) form

(xn + xn+1)(xn + xn−1) = 2xn(xn − γ ). (3.10)

The deautonomization of (3.10) leads to γ = pn + r , if one restricts oneself to the symmetric
case. This equation is deeply related to (3.8) and the full case will be studied in detail in [15].

(IV) Here we find the mapping

(xnxn+1 − 1)(xnxn−1 − 1) = −x4
n − 1 + (β + ζ )xn

(
x2

n − 1
)

βxn + 1
. (3.11)

In order to deautonomize this mapping it is convenient to rewrite it as

(xnxn+1 − 1)(xnxn−1 − 1) = −
(
x2

n − 1
)
(xn − α)(xn − 1/α)

βx + 1
. (3.12)

We found that the deautonomization satisfying the integrability criteria leads to α = constant,
βn = β0λ

n. This is a special case of the q-discrete Ablowitz–Fokas equation we studied in
[16, 17].

Degenerate cases can also be obtained. Taking β = −1/α gives the mapping

(xnxn+1 − 1)(xnxn−1 − 1) = (
1 − x2

n

)
(1 − αxn) (3.13)

and its deautonomization results in αn = α0λ
n (provided we restrict ourselves to purely

symmetric terms). This is deeply related to the q-discrete Ablowitz–Fokas equation.
Another degenerate case can be obtained with β = 1, leading to

(xnxn+1 − 1)(xnxn−1 − 1) = (1 − xn)(xn − α)(xn − 1/α) (3.14)

which is simply a periodic one: xn+4 = xn.
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(V) Here, for the generic case β �= 0, we find the mapping (with β = 1)(
xn + xn+1 + 2z

xn + xn+1

) (
xn + xn−1 + 2z

xn + xn−1

)
= (xn + z)(xn(xn + 2z) + 2γ z − ζ )

xn

(
x2

n − ζ
) . (3.15)

For the purpose of deautonomizing we rewrite (3.15) as(
xn + xn+1 + zn + zn+1

xn + xn+1

)(
xn + xn−1 + zn + zn−1

xn + xn−1

)
= (xn + zn)((xn + zn)

2 − a2)

xn

(
x2

n − b2
) (3.16)

where, of course, prior to deautonomization, zn = zn+1 = zn−1. Restricting ourselves to
deautonomizations that do not introduce asymmetries we find zn = pn + r while a and b are
constants.

Taking a → ∞ and b → ∞ with ratio a/b = c we obtain the mapping(
xn + xn+1 + zn + zn+1

xn + xn+1

) (
xn + xn−1 + zn + zn−1

xn + xn−1

)
= c2 xn + zn

xn

(3.17)

which is not a discrete Painlevé equation but rather a linearizable one. Its linearization is
straightforward. We take cun = (xn + xn+1 + zn + zn+1)/(xn + xn+1) which leads to

zn+1

unun+1 − 1
+

zn

unun−1 − 1
= zn+1 + zn

cun − 1
. (3.18)

It suffices now to put u = (cw − 1)/(w − c) in order to transform (3.18) into
zn+1

wnwn+1 − 1
+

zn

wnwn−1 − 1
= 0 (3.19)

with obvious solution. From (3.19) it is clear that z can be any function of n and not just linear.
Next we examine the degenerate cases of (3.16). Taking b = z we obtain the mapping(

xn + xn+1 + zn + zn+1

xn + xn+1

) (
xn + xn−1 + zn + zn−1

xn + xn−1

)
= (xn + zn)

2 − a2

xn(xn − zn)
(3.20)

while the choice a = z leads to the dual form(
xn + xn+1 + zn + zn+1

xn + xn+1

)(
xn + xn−1 + zn + zn−1

xn + xn−1

)
= (xn + zn)(xn + 2zn)

x2
n − b2

. (3.21)

In both cases the deautonomization, preserving the one-component form, gives zn = pn + r

with a and b constant in (3.20) and (3.21) respectively. Finally we perform the double
degeneracy a = b = z, which results in the mapping(

xn + xn+1 + zn + zn+1

xn + xn+1

) (
xn + xn−1 + zn + zn−1

xn + xn−1

)
= xn + 2zn

xn − zn

(3.22)

again with zn = pn + r as nonautonomous extension.
(VI) Again we start from the generic case γ �= 0 and find the mapping (for γ = 1)(

xnxn+1 − z2

xnxn+1 − 1

) (
xnxn−1 − z2

xnxn−1 − 1

)
=

(
x2

n − z2
)
(xn + bz)(xn + z/b)(

x2
n − 1

)
(xn + a)(xn + 1/a)

. (3.23)

Again, in view of the deautonomization, we rewrite (3.23) as(
xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
=

(
x2

n − z2
n

)
(xn + bzn)(xn + zn/b)(

x2
n − 1

)
(xn + a)(xn + 1/a)

(3.24)

and obtain, by applying discrete integrability criteria while excluding asymmetric cases,
zn = z0λ

n and a, b constant. A limiting case can be obtained by taking a → 0 and b → 0
with ratio a/b = c2,(

xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
= c2zn

x2
n − z2

n

x2
n − 1

. (3.25)
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Performing the change of variable c
√

q
n
un = (xnxn+1 − znzn+1)/(xnxn+1 − 1) where qn =

(znzn+1)
1/2 we find(

unun+1 − qnqn+1

unun+1 − 1

)(
unun−1 − qnqn−1

unun−1 − 1

)
=

(
un − q

3/2
n

/
c

un − q
−1/2
n

/
c

)2

(3.26)

which is a special case of an equation already obtained in [18].
Degenerate cases can be also derived from (3.23). The choice a = z leads to(

xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
= (xn − zn)(xn + bzn)(xn + zn/b)(

x2
n − 1

)
(xn + 1/zn)

(3.27)

where, again, excluding asymmetric cases, zn = z0λ
n and b constant. A dual case (b = z,

a constant) leads to(
xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
=

(
x2

n − z2
n

)(
xn + z2

n

)
(xn − 1)(xn + a)(xn + 1/a)

. (3.28)

On the other hand one can also cancel one a factor with a b factor, for instance taking b = az

to the formal form(
xnxn+1 − z2

xnxn+1 − 1

) (
xnxn−1 − z2

xnxn−1 − 1

)
=

(
x2

n − z2
)
(xn + az2)(

x2
n − 1

)
(xn + a)

. (3.29)

The n-dependence is more subtle in this case as neither a nor b are constants. In fact the
discrete integrability criteria lead (excluding asymmetry) to(

xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
=

(
x2

n − z2
)(

xn + cz
3/2
n

)(
x2

n − 1
)(

xn + cz
−1/2
n

) (3.30)

with zn = z0λ
n and c constant. Taking c → 0 or c → ∞ we can obtain two limits of (3.30)

of the form (
xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
= hn

x2
n − z2

n

x2
n − 1

(3.31)

where hn is equal to 1 or z2
n respectively.

Further degeneracies can be obtained. Taking a = z2 in (3.28) leads to(
xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
=

(
x2

n − z2
n

)
(xn − 1)

(
xn + 1

/
z2
n

) (3.32)

while a dual form of the latter can be obtained from (3.27) with b = z2.(
xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
= (xn − zn)

(
xn + z3

n

)(
x2

n − 1
) (3.33)

and a self-dual form can be obtained from either (3.26) or (3.27)(
xnxn+1 − znzn+1

xnxn+1 − 1

) (
xnxn−1 − znzn−1

xnxn−1 − 1

)
= (xn − zn)

(
xn + z2

n

)
(xn − 1)(xn + 1/zn)

. (3.34)

Finally we have the mappings corresponding to the two cases VII and VIII. The autonomous
forms are given below. From VII with β = 1 we have

(xn+1 − xn − z2)(xn−1 − xn − z2) + 4xnz
2

xn+1 − 2xn + xn−1 − 2z2
= −z2 5x2

n + (z2 + 6γ )xn + γ z2 + ζ

x2
n + 2(z2 + γ )xn + 2γ z2 + ζ

. (3.35)
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Limiting cases can be calculated in a straightforward way. Similarly for VIII with
γ = 1/(z2 + 1) we have

(xn+1z
2 − xn)(xn−1z

2 − xn) − (z4 − 1)2

(xn+1z−2 − xn)(xn−1z−2 − xn) − (z−4 − 1)2

= −z8 βx3
n + x3

n + (ζ z2 + β(z2 + 1)2(z2 − 1))xn + z4 − 1

βz6x3
n + z4x3

n + (ζ z4 − β(z2 + 1)2(z2 − 1))xn − z4 + 1
. (3.36)

We shall not attempt any deautonomization of these two cases. As a matter of fact the study
of the discrete Painlevé equations which come from these two classes [19] shows that one
would have had not only to allow z and the parameters to depend on n but also to transform
substantially the left-hand side of (3.35) and (3.36).

4. Two special cases

In the previous section we have examined the antisymmetric QRT mappings, as well as their
deautonomizations, coming from the eight classes of canonical A1 matrices. However, there
exist two familiar forms of discrete Painlevé equations the autonomous forms of which cannot
be directly read-off from the mappings associated with these eight classes. Indeed they
correspond to some limit and in particular to z → 0 in class V and z → 1 in class VI. We
have thus

(Ṽ)
1

xn+1 + xn

+
1

xn + xn−1
= f (xn) A1 =

0 0 1
0 2 0
1 0 0


(ṼI)

1

xn+1xn − 1
+

1

xnxn−1 − 1
= f (xn) A1 =

1 0 0
0 −2 0
0 0 1

 .

The same limits in the case of classes VII and VIII lead to, essentially, the same A1 matrices
thus there is no need to study them apart.

In the case of class (Ṽ) we find the mapping

1

xn+1 + xn

+
1

xn + xn−1
= 3βx2

n + 2γ xn − ζ

2xn

(
βx2

n − ζ
) . (4.1)

For the purpose of deautonomization we must introduce the proper n-dependence and the best
way to do this is to take consistently the limit z → 0 in (3.16). We find thus

zn+1 + zn

xn+1 + xn

+
zn + zn−1

xn + xn−1
= zn

(
3x2

n − b
) − axn

xn

(
x2

n − b
) (4.2)

and zn = pn + q. Interesting limits of (4.2) do exist. Taking b → ∞ and also a → ∞, with
a/b = c we find the equation

zn+1 + zn

xn+1 + xn

+
zn + zn−1

xn + xn−1
= zn

xn

+ c (4.3)

which has been identified in [20] as a being linearizable for any function z of n. Taking b = 0
we find

zn+1 + zn

xn+1 + xn

+
zn + zn−1

xn + xn−1
= 3zn

xn

− a

x2
n

(4.4)
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which is also a linearizable equation. In fact for z to be a free function of n we rewrite the
equation as

zn+1 + zn

xn+1 + xn

+
zn + zn−1

xn + xn−1
= zn+1 + zn + zn−1

xn

− a

x2
n

. (4.5)

It suffices now to invert x, i.e. x → 1/x, and, after some elementary manipulations,
the equation reduces to precisely (4.3) with c = a.

In the case of (ṼI) we find

1

xn+1xn − 1
+

1

xnxn−1 − 1
= − βxn

(
x2

n − 2
) − ζxn − 2γ(

x2
n − 1

)(
γ
(
x2

n + 1
)

+ (β + ζ )xn

) . (4.6)

Again for the correct deautonomization of (4.6) we must start from (3.24) and implement
consistently the limit z → 1, while taking b → a. We obtain thus

zn + zn+1

xnxn+1 − 1
+

zn + zn−1

xnxn−1 − 1
= cxn

(
x2

n − 3
)
zn + dxn

(
x2

n − 1
)

+ 4zn(
x2

n − 1
)(

x2
n + cxn + 1

) (4.7)

where the fact that the same constant c appears in both the numerator and the denominator
of (4.7) is imposed by the autonomous limit. We find that the deautonomization of (4.7)
satisfying discrete integrability criteria leads to zn = pn + q. Limiting cases of (4.7) do exist.
If we take c → ∞ and d → ∞ such that d/c = k we find the mapping

zn + zn+1

xnxn+1 − 1
+

zn + zn−1

xnxn−1 − 1
= zn

x2
n − 3

x2
n − 1

+ k (4.8)

while when d remains finite we find (4.8) with k = 0.

5. Conclusions

In this paper we have examined a special class of QRT mappings which create a (minor)
paradox. They are integrable mappings which have the symmetric QRT form but do not
belong to the symmetric QRT family. The analysis we presented here showed that such
mappings can be obtained from a generic A1 matrix and an antisymmetric A0, i.e. a matrix
of the form (3.2). Thus the correct interpretation of these mappings is that they belong to the
asymmetric QRT family and just happen to have a symmetric form due to the special form of
A0. We have dubbed these mappings ‘antisymmetric’.

It is interesting to point out that the converse situation does exist. Indeed, there exist
integrable mappings of the asymmetric QRT form, i.e. mappings involving two components,
which do not really belong to this class but which are in fact symmetric QRT mappings. Let
us present such an example here. We start with a mapping of the class (VI) belonging to the
symmetric QRT family. Its generic form is then(

xnxn+1 − z2

xnxn+1 − 1

) (
xnxn−1 − z2

xnxn−1 − 1

)
=

(
x2

n + axn + z2
)(

x2
n + bxn + z2

)(
x2

n + cxn + 1
)(

x2
n + dxn + 1

) . (5.1)

Putting y = (xnxn+1 − z2)/(xnxn+1 − 1) we can rewrite (5.1) as

xnxn+1 = yn − z2

yn − 1
(5.2a)

ynyn−1 =
(
x2

n + axn + z2
)(

x2
n + bxn + z2

)(
x2

n + cxn + 1
)(

x2
n + dxn + 1

) . (5.2b)
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This equation is indeed of asymmetric QRT form but does not belong to that family. As a
matter of fact the asymmetric QRT mappings of class (II) may have right-hand sides which are
ratios of quadratic polynomials but not quartic. Thus (5.2) is not an acceptable form. However,
this class of equation does not warrant a special study. Given that (5.2a) has a homographic
rhs, it is clear that the first transformation one would attempt would be to eliminate y, reducing
the mapping to a symmetric QRT one and thus solving the paradox.
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